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FOREWORD
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1.I NTRODUCT ION

Ii.

1.1 OVERVIEW

This report addresses the problem of processing air-

borne gravity gradiometer measurements to estimate the gravity

disturbance vector at the surface of the earth. The approach

is based on a minimum-variance estimation technique, which is

optimal with respect to probabalistic models for the uncer-

tainties associated with the measurement errors and the a priori

statistical information about the gravity disturbance vector.

A primary result of the work reported herein is a

practical methodology for processing the gradiometer measure-

ments to meet specified accuracy requirements. The methodol-

ogy consists of two stages. The first stage involves averaging

the individual gradiometer measurements over appropriate sub-

regions within the survey area using a data template. During

the second stage, these averaged gradiometer measurements are

optimally weighted and summed to estimate the three components

of the gravity disturbance vector at the surface of the earth.

The weights are chosen optimally with respect to probabilistic

models for (1) the measurement errors and (2) the a priori

uncertainty about the true gravity disturbance vector. The

rms accuracy of the estimated disturbance vector is character-

ized by an error covariance matrix.

In preparation for testing of the Gravity Gradiometer

Survey System (GGSS), a prototype example of an averaging

template is documented in this report. The gravity and meas-

urement error covariance matrices (valid for this template and

1-1
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the Attenuated White-Noise (AWN) (Ref. 2) worldwide gravity

model) are provided in Ref. 1. This template provides a simple,

but modestly accurate example of the measurement averaging

portion of the data processing methodology. Other templates,

having more averaging zones for meeting the required rms accu- S

racy and optimized for data processing, are being developed at

TASC specifically for GGSS testing. The prototype template

described here is provided as an interim example of the type

of processing that will be required.

1.2 TECHNICAL APPROACH
p

The technical approach of this study is based on

minimum-variance estimation theory. This approach has the

flexibility needed to treat mixtures of different types of

gravity quantities acquired at different survey heights. The P
approach applies to both point and mean gravity field data.

The central aspect of this study is the design of the

data averaging templates. The templates are being developed _

to achieve required rms accuracy levels. This is accomplished

by using error covariance analyses to study the tradeoffs be-

tween estimation accuracy and the template parameters for dif-

ferent blends of gradient data. The covariance analyses can

be performed before any survey data are available because the

error covariances are computed using gravity and measurement

error models.

1.3 ORGANIZATION OF REPORT

The theoretical basis for the estimation algorithm is

presented in Chapter 2. First, the quantities to be estimated

1-2



me

and the quantities to be measured are defined. The practical

need for the data processing to reduce the dimensionality of

the computations is explained. Based on these preliminaries,

the estimation problem is stated and a recursive algorithm for

solving it is presented.

The remainder of Chapter 2 describes some recommended

conventions for documenting the data analysis. A prototype

data processing template is defined and the derivation of the

covariances which are needed to design an optimal estimator

for this template is explained. The report ends with Chap-

ter 3, which presents a summary and conclusions.

11



2. TECHNICAL DISCUSSION

The purpose of this chapter is to formulate and dis-

cuss the problem of processing data from an airborne gravity

gradiometer survey. The principal result of this analysis is

a practical algorithm for (1) estimating the point gravity

disturbance vector at the surface of the earth (or other appro-

priately defined downward continuation point) from the survey

data and (2) computing mean-square errors of those estimates.

2.1 STATEMENT OF THE PROBLEM

Processing survey data to estimate the gravity dis-

turbance vector is formulated as a minimum-variance estimation

problem. This formulation involves three important elements:

" Definitions of the gravity quantities
that are being estimated

" Definitions of the gravity quantities
that are being measured

" Probabilistic models for the uncertainties
associated with the survey measurement
data and all associated gravity quanti-
ties (both those being measured and those
being estimated).

2.1.1 Estimated Gravity Quantities

The gravity quantities to be estimated depend on the

purpose of the data processing. For data processing that will

follow routine GGSS survey operations, the gravity disturbance

2-1



vector at the surface of the earth will typically be estimated.

In contrast, for the verification tests of the GGSS, a spe-

cialty defined gravity disturbance vector should be estimated,

as explained in the following discussion.

The gravity disturbance vector at position r is de-

fined as follows:

6(r) a g(r) - gR(_R) (2.1-1)

In Eq. 2.1-1, g(r) is the whole value gravity vector at r, and

gR(r) is the reference gravity vector. The reference field

and the coordinate systems for expressing gravity vectors and

position vectors must be specified to complete the definition

of the disturbance vector. Appropriate candidate reference

systems are WGS 72 or WGS 84.

Although 6(r) is the quantity that is usually sought,

it is inappropriate to estimate this gravity disturbance vector

(luring airborne testing of the GGSS. The reason is that ini-

tial gradiometer survey testing will be confined to a limited

geographic area (probably on the order of 500 km by 500 kin).

This limited extent makes long-wavelength testing of the survey

accuracy imprecise. However, the medium- and short-wavelength

accuracy of survey data can be tested by estimating a redefined

gravity disturbance vector, which in this report is called the

residual gravity disturb ance. This residual vector is defined

so that its variance at long wavelengths can be controlled

to suit the accuracy o)bjectives of GGSS testing. The residual

gravity disturbance vector, denoted d(r), is defined as the

departure of the disturbance 6(r) from its local mean 6 m(r):

(r, ' 6(r) 6re(r) (2.1-2)

2-2



For this style of template, which is comprised of con-

centric circuits, the documentation matrix D is nx8. The kth

gravity quantity, whose value is given by x(k), is described

by the following eight numbers in the kt h row of D:

D(k,l) = ID Number of the kth gravity quantity

D(k,2) = x coordinate (x ) of the upper-left cornerc
of the template circuit (km)

D(k,3) = y coordinate (y c) of the upper-left corner

of the template circuit (km)

D(k,4) = width (w) of the rectangular subregions (km)

D(k,5) = mean altitude (A1 ) of rectangular subregion
No. 1 (km)

D(k,6) = mean altitude (A2 ) of rectangular subregion
No. 2 (km)

D(k,7) = mean altitude (A3 ) of rectangular subregion
No. 3 (km)

D(k,8) = mean altitude (A4 ) of rectangular subregion
No. 4 (km)

For a point gravity quantity at the template's center, as dis-

tinguished from a mean quantity, the template circuit reduces

to a point at the origin, which yields D(k,2) = D(k,3) =

D(k,4) = 0 and D(k,5) = D(k,6) = D(k,7) = D(k,8). For the

mean z gravity disturbance (i.e., when ID No. = 2), the mean

refers to an average over a single square area centered at the

origin. Therefore, if ID = 2, the parameter w denotes the

length of each side of this square area.

Other forms of templates, having different symmetries,

are appropriate for estimating x (east) and y (north) gravity

disturbance components (i.e., the deflections of the vertical).

Such templates are being developed and will be provided in

subsequent reports.

2-16
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discussion, each of the picture-frame averaging zones will be

referred to as a "circuit." For mathematical tractability,

each of these circuits is composed of simple rectangular sub-

regions. The recommended way of defining a single circuit

using four rectangular subregions is illustrated in Fig. 2.4-2.

The geometry of each circuit is then completely specified by

seven parameters: the coordinates (xc Y ) of the upper-left

corner, the width w of each rectangular subregion, and the alti-

tude of each rectangular subregion. The width w represents the

crosstrack resolution of the gradient measurements, given that

the actual aircraft paths are expected to have minor deviations

from straight paths. A-l 1327

SUBREGION NO. 4

W ".

SUBREGION
NO.1

SUBREGION
NO.3

SUBREGION NO. 2

Figure 2.4-2 A Typical Template Circuit, Specified by the
Three Parameters xc Yc w and Altitude of

Each Subregion (Not to Scale) .1]

2-15
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data consists of concentric "picture-frame" averaging zones,

which are depicted (not to scale) in Fig. 2.4-1. The geometry

illustrated in Fig. 2.4-1 reflects the recommended test flight

pattern characterized by variable track spacing which increases

with distance from the survey pattern center. In the following

A 11752

AVERAGING ZONES

Figure 2.4-1 Data Processing Template with Rectangular
Geometry and Azimuthal Symmetry
(Not to Scale)

*The choice of the template involves a compromise between the
number of zones (the size of the covariance matrix that has
to be inverted) and the loss of accuracy with respect to the
optimal template in which each measurement would be considered
an individual zone. Thus, during GGSS testing, data col-
lected between template zones, although used during the track-
crossing adjustment preprocessing, do not appear explicitly
in the final estimation equations. For operational data
processing, all data will eventually be used directly in the
estimation. This is because template shifts are needed to
obtain estimates at different locations, and each shift of
the template uses a different subset of the data in the
estimation.

2-14
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As discussed in Section 2.1, the survey data are proc- i
essed by averaging them over subregions of the surveyed area. 7
(It is expected that the data processing will include track-

crossing adjustments to reduce low-frequency measurement errors.)

The resulting mean gradient data are listed in the gravity

measurement vector z1i According to Eq. 2.1-7, these averaged

data are a linear combination of components of the truth vec-

tor x and the measurement error vector v1i To document the .i

gravity-related quantities in x, an nxp documentation matrix D L
is defined, where n is the number of quantities listed in x,

and p is the number of parameters used to describe each of

these quantities. The parameters depend on the particular 2
template that is used for the data averaging, as discussed in

the following section.

2.4 DATA TEMPLATES

For concreteness, the discussion of data templates 1
focuses on a simplified example of practical importance in test-
ing the GGSS: estimating the z (up) component of the residual

disturbance vector using gradiometer measurements of the zz

element of the gravity gradient. An appropriate template for
averaging these gradiometer measurements would have azimuthal
symmetry. This symmetry applies to data processing that is

optimal with respect to gravity models having an isotropic

crosscorrelation function relating the vertical disturbance

with the measurements of the zz gradient element. Thus, a

reasonable template with complete azimuthal symmetry would I

have concentric annular averaging zones like a bulls-eye tar-

get. However, airborne gradiometer surveys will yield gradient I
measurements taken along nearly straight tracks that form a

rectangular grid. To be consistent with this survey geometry, I
the template should also have a rectangular geometry. There-

fore, a reasonable template geometry for reduction of test

2-13 'I



2.3 GRAVITY DATA DOCUMENTATION

The analysis of gravity gradiometer survey data in-

volves several kinds of gravity quantities. These include

point values of gravity disturbance vectors and disturbance

gradients, expressed with respect to a reference field. Other

important gravity disturbance quantities are mean values of

gravity disturbance vectors and disturbance gradients, averaged

over template zones. For convenience in designing future sur-

veys and for storing, processing, and documenting actual survey

data, each gravity quantity can be assigned an identification

(ID) number. These numbers are selected sequentially. The

beginning of such a list follows; additional quantities can be

added to the list as appropriate.

ID NUMBER GRAVITY QUANTITY UNITS

1 Point z (Up) Disturbance mgal
2 Mean z (Up) Disturbance mgal
3 Point x (East) Disturbance mgal
4 Mean x (East) Disturbance mgal
5 Point y (North) Disturbance mgal
6 Mean y (North) Disturbance mgal
7 Point zz Disturbance Gradient mgal/km
8 Mean zz Disturbance Gradient mgal/km
9 Point xx Disturbance Gradient mgal/km
10 Mean xx Disturbance Gradient mgal/km
11 Point xz Disturbance Gradient mgal/km
12 Mean xz Disturbance Gradient mgal/km
13 Point yy Disturbance Gradient mgal/km
14 Mean yy Disturbance Gradient mgal/km
15 Point xy Disturbance Gradient mgal/km
16 Mean xy Disturbance Gradient mgal/km
17 Point yz Disturbance Gradient mgal/km
18 Mean yz Disturbance Gradient mgal/km

(entries to be added as
future needs arise).

2-12
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2.2 ESTIMATION ALGORITHM

The solution to the estimation problem of the previous

section is given by the following recursive equations (Ref. 3),

which update the prior estimates and their error covariances.

The optimal estimate of the truth vector x and the error covari-

ance matrix for this estimate are

-i -0 + KI(zI - HIk0) (2.2-1)

P1 P 0 K1H1 P0  (2.2-2)

In Eqs. 2.2-1 and 2.2-2, the nxm gain matrix K1 is

computed as follows:

K1  P oHT[HIPoHT + R1] -1 (2.2-3)

K1  0H1[H1P0H1  11

The estimate of the residual disturbance vector and

the covariance matrix Pdd of the errors in this estimate are

given by the following two formulas:

d(r) BxI (2.2-4)

P = BP BT (2.2-5)~dd 1

For the case where the prior estimate k0 = 0, the optimal esti-

mate can be written directly in terms of the averaged data z

as follows:

d(r) = GzI (2.2-6)

G = BK1  (2.2-7)

2-11



2.1.4 Estimation Problem

The problem of estimating the residual gravity dis-

turbance vector d(r) from averaged gradiometer measurements

can be stated as follows:

Given: 1. The a priori estimate X 0̂ of the truth

vector x.

2. The covariance matrix P0 of the errors in

this prior estimate.

3. The measurement vector z of averaged gradi-

ometer data.

4. The covariance matrix R1 of the errors in

these averaged data.

Find: 1. An estimate d(r) of the residual gravity dis-

turbance vector d(r) at the template's center.

2. The covariance matrix Pdd of the errors

a(r) = d(r) - d(r).

Optimality: The estimates are to be optimal in the sense

that the weighted mean-square errors, J andx

d' are minimized for any positive-definite
symmetric weighting matrices W and Wd:

x EIX Wx i (2.1-20)

Jd 0 Ela(r) T Wd a(r)] (2.1-21)

2-10



B [1 -1 01x12] (2.1-12)

HI -0 1 2 2 11121 (2.1-13)

An important conclusion to be drawn from this discussion is that

the definitions of the truth vector x, the observation matrix

H1 , and the output matrix B are each selected to suit the needs

of the particular estimation problem that is being formulated.

The prior knowledge of the truth vector x is modeled

by an unbiased estimate denoted k0 :

20= E[xJ (2.1-14)

Usually k-0 = 0 because a reference field has been subtracted from

all gravity-related quantities. The uncertainty of this prior

estimate is modeled by its error covariance. The error vector

"* xo and its nxn covariance matrix Po are defined as follows:

-0 - - (2.1-15)

P0  -T Ex- (2.1-16)

The prior knowledge of the measurement error vector

v is modeled by stating that its mean is zero, its covariance

matrix is R1 (a known matrix), and its crosscovariance with

the error vector x-0 is zero:

E[vlJ 0 (2.1-17)

E[ l] R 1  (2.1-18)

Ev - 0 (2.1-19)

4 2-9



The truth vector in Eq. 2.1-9 serves only as an illustrative

example of how x can be organized; this particular blend of

gravity quantities would not actually be used in practice be-

cause additional gradient quantities (besides Tz) Iust bezz
included to estimate the residual gravity disturbance vector.

For the example case under discussion, the number of

measurements in z is m =12 and the number of gravity-related

scalars in x is n = 18. The B matrix in Eq. 2.1-9 is L

B = [13x -13 03x2 (2.1-10) L

3x3 3x3 3x121

where I is the 3x3 identity matrix, and 0 is the 3x12 C.
3x3 3x 12

zero matrix. This zero matrix accounts for the fact that the

12 gradient quantities do not enter the definition of the point

residual disturbance.

To simplify the bookkeeping, the values of the mean

gradients in x are listed in the same order as their measured

values in z1 " With this convention, the observation matrix

has the following form:

H1 = [012x6 I12xl21 (2.1-11)

In Eq. 2.1-11, the 12x6 zero matrix indicates (1) that there

are 12 scalar quantities in the measurement vector z1 , and (2)

that the first six elements of x are not being measured.

0 Later in this report, a prototype template is defined

for estimating the z (up) component of the residual gravity dis-

turbance d (r), rather than all three components of d(r).

For this simplified case, the truth vector x is 14xl. The

first two elements of x are the scalars, 6 z(r) and its local

mean, and the B and H matrices are

2-8
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d(r) Bx (2.1-8)

In Eq. 2.1-8, the 3xn output matrix B selects those linear

combinations of the elements of x that are being estimated.

The following discussion provides an example of how

this formulation is used for gradiometer test data reduction.

For convenience, the quantities to be estimated are separated

from those being measured when defining the elements of x. (In

many estimation problems, the quantities to be estimated are

included among those being measured because it is often appro-

priate to treat measured and estimated quantities in a unified

manner.) For GGSS testing, the residual gravity disturbance

[d(r) = 6(r) - 6(r) ] is to be estimated. Therefore, the two

conventional gravity quantities needed to define d(r) [the

point disturbance 6(r) and its local mean 6m()] are listed

first in x. The remaining elements of x are used to represent

the actual average values of the measured quantities. For

gradiometer data, these average values are the mean gradients

that are defined by the appropriate data template zones. For

example, the particular prototype template used in this report

has 12 zones, over which the zz component of the gravity gradi-

ent is averaged. Therefore, when using this template, the

average values of T for these zones a:-e the last 12 elementszz
of x (these mean values are denoted as T zz(i) for i 1 to 12):

6(r)

-6 (r)

x = T (1) (2.1-9)

Tzz(2)

Tzz(12)

2-7
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number of computations. The process of template design can be

performed systematically by using error covariance analyses.

" Therefore, the template geometry is selected to be not only

* appropriate for estimating the residual gravity disturbance

vector, but also amenable to an efficient and accurate covari-

ance analysis.

In the following discussion, the measurement vector

i is a list of mean gravity gradient elements, which are com-

puted during the data processing. To define these quantities

completely, the location (including altitude) and size of each

averaging window must be specified.

2.1.3 Error Models

The last part of formulating the estimation problem

is to model the errors in the observed data and the a priori

uncertainty in the values of the gravity disturbance and grav-

ity gradient field. The observed data are represented by the

measurement vector z of appropriately averaged gradiometer

measurements. A model for the averaged data is given as follows:

= HIx + v 1  (2.1-7)

In Eq. 2.1-7, v is an mxl vector of measurement errors. The

nxl truth vector x represents the actual values of the gravity-

related quantities. These quantities consist of those that are

being estimated as well as those that are being measured. The

mxn observation matrix H1 selects from x those linear combina-

tions of its elements that are being measured.

The residual gravity disturbance vector d(r), which

is to be estimated is also expressed in terms of the truth

vector:

I: 2-6

t7- .



A-11326

GRADIOMETER
SURVEY TRACKS

DATA -
TEMPLATE
WINDOWS

ESTIMATION

POINT IS BELOW
CENTER POINT

Figure 2.1-1 Data Template Windows Superimposed
on Survey Tracks (Not to Scale)

are then listed in a vector denoted z and used optimally to

estimate the residual disturbance vector. The locations and

sizes of these subregions are selected to achieve specified

rms accuracies, while minimizing the computational effort.

A convenient way of visualizing this processing is to

imagine a template, as depicted in Fig. 2.1-1, that is super-

imposed on a map of the survey tracks, with the center of the

template located over the position where the gravity departure

is to be estimated. The "windows" in this template define the

subregions within which the gradient measurements are averaged. b
The shapes and locations of these windows are selected to

achieve specified rms accuracies with the smallest possible

2-5
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2.1.2 Measured Gravity Quantities

During testing of the GGSS, the measured gravity quan-

tities will include the six distinct elements of the gravity

gradient tensor. These gradient measurements will be made

along nearly straight flight paths (within ±100 m of the nomi-

nal flight path) that form a grid over the survey region. For

analysis, all of the measurements in the survey can be listed

in a measurement vector z. To estimate the number of these

measurements, consider, for illustrative purposes,t flight paths

that are 5 km apart and form a square grid 300 km on a side.

Such a survey consists of 122 paths, each 300 km long, for a

*total track length of 36,600 km. If the six gradient elements

are measured at 1 km intervals (e.g. , one set of measurements

every 12 seconds provided by a plane flying 300 km/hr), then
the measurement vector z contains 219,600 numbers. To process

z optimally (to estimate the residual gravity disturbance vec-

tor d(r) at the center of the survey region), 219,600 simul-

taneous equations must be solved. These computations are

impractical because of the size of z. By using a data averag-

ing technique to reduce the dimension of the measurement vec-

tor z, a practical estimation algorithm is developed.

To estimate the residual gravity disturbance vector d(r),

the gradient measurements can be averaged over selected sub-

regions of the survey area. The resulting average measurements

*It is recognized that only five of these are independent.
However, the redundancy of the sixth should be used to
improve overall accuracy.

The actual test flight pattern may entail a greater extent and
variable track spacing which increases with distance from
the center.

2-4
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In Eq. 2.1-2, the local-mean disturbance vector is defined as

the following average centered on position r:

6.m(r) ffw(p) 6 (r-p) dpldP2  (2.1-3)

where

P_ P (2.1-4)
IP21

In Eq. 2.1-3, w(p) is the weighting function at shift p.

The weighting function for a uniform local average over a square

O geographic region centered on position r is given by the fol-

lowing equations in which L is the length of each side of the

averaging area:

w(P) a L-2  -L/2 < p1 < L/2, -L/2 < P2 < L/2 (2.1-5)

w(P) A 0, otherwise (2.1-6)

'rhe weighting function defined by Eqs. 2.1-5 and 2.1-6

is recommended for use in testing because (1) it provides the

needed control over the long-wavelength variance of the resid-

ual disturbance vector, and (2) it yields lagged covariance

9_ functions for the residual disturbance that can be evaluated

in closed form. The length parameter L controls the long-

wavelength variance of the residual disturbance d(r). The

variance at wavelengths longer than L is significantly attenu-

ated, while the variance at wavelengths shorter than L is only

slightly affected. Because the lagged covariances of d(r) can

be evaluated in closed form, the weighting function defined by

Eqs. 2.1-5 and 2.1-6 is especially suited for covariance anal-

yses of survey accuracy. On the basis of such covariance

studies, algorithms are being developed by TASC for processing

the survey data to meet specified rms accuracies.

2-3
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A prototype template for estimating the z residual

disturbance component from airborne measurements of the zz

gradient element is defined by the 14 x 8 documentation matrix

presented in Table 2.4-1. This template is a prototype example

of the templates that will be used for processing the full set

of gradiometer test data. Later templates will contain more

circuits and be applied to additional gravity gradients. The

purpose of the prototype template is to provide an interim

example of the type of data averaging and data documentation

that is recommended for GGSS testing, as well as to offer a

rudimentary data processing capability.

TABLE 2.4-1

DOCUMENTATION MATRIX FOR PROTOTYPE TEMPLATE

ROW ID Xc Yc w A1 A2 A3  A4NO. (km) (km) (km) (km) (km) (km) (km)

1) 1 0 0 0 0 0 0 0
2) 2 -125 125 250 0 0 0 0
3) 7 0 0 0 0.6 0.6 0.6 0.6
4) 8 -5 5 1 0.6 0.6 0.6 0.6
5) 8 -10 10 1 0.6 0.6 0.6 0.6
6) 8 -15 15 1 0.6 0.6 0.6 0.6
7) 8 -20 20 1 0.6 0.6 0.6 0.6
8) 8 -30 30 1 0.6 0.6 0.6 0.6
9) 8 -40 40 1 0.6 0.6 0.6 0.6

10) 8 -60 60 1 0.6 0.6 0.6 0.6 A
11) 8 -80 80 1 0.6 0.6 0.6 0.6
12) 8 -120 120 1 0.6 0.6 0.6 0.6
13) 8 -160 160 1 0.6 0.6 0.6 0.6
14) 8 -320 320 1 0.6 0.6 0.6 0.6

The first two elements of the truth vector x described

by Table 2.4-1 are the point z gravity disturbance and its

mean value averaged over a 250-km x 250-km region. Therefore,

the z component of the residual disturbance is computed from x

as follows:
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dz(r) = Bx (2.4-1)

B [I -1 01 (2.4-2)
1x121

2.5 COVARIANCE MATRICES

As explained in Sections 2.1 and 2.2, to implement an

optimal estimator for a particular data template, or to com-
pute the rms accuracy of such an estimator, two covariance

matrices are needed. These are (1) the error covariance ma-

trix P0 of the initial estimate k0 of the truth vector x
(Eqs. 2.1-15 and 2.1-16), and (2) the error covariance matrix

R of the errors v in the measurement vector zi (Eqs. 2.1-7
and 2.1-18). In this section, these covariance matrices are
defined for the prototype template defined in Table 2.4-1.

Numerical values for these covariances are computed using the

flat-earth version of the AWN worldwide gravity disturbance

model (Ref. 2) and a white-noise error model for the gradi-

ometer measurement errors.

2.5.1 Gravity Error Covariance Matrix

With reference to Table 2.4-1, the first gravity quan-

tity has ID No. = 1, and is the point value of the z gravity

disturbance. This is the vertical gravity disturbance at the

point with coordinates x = 0 and y = 0. Therefore,

x(l) 6 z(0) (altitude 0 km) (2.5-1)

According to Table 2.4-1, the second gravity quantity
has ID No. = 2. The table indicates that x(2) is the mean

value of 6 (r), averaged over a 250 km x 250 km square area
Twith center at x = 0 and y = 0. Therefore, with r [x yj
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125

x(2) A 202 ff 6z(r) dx dy (altitude = 0 km)- - (250)2 -125 i' ,

(2.5-2)

The third quantity documented in Table 2.4-1 has ID

No. = 7, which denotes the point value of the zz disturbance

gradient Tzz. The point value is at location x 0 and y 0

and an altitude of 0.6 km. Therefore,

x(3) A T (0) (altitude = 0.6 km) (2.5-3)

The remaining gravity quantities documented in

Table 2.4-1 have ID No. = 8, which denotes mean zz disturbance

gradients, with their averages taken over four rectangular

subregions that are uniquely identified from the upper-left

corner coordinates (xc Y the width w, and the altitudes A1 ,

A2 , A3 and A4 . For example, the fourth quantity is defined

as follows:

S

x(4) A (II + 12 + 13 + 14)/4 (2.5-4)

I1 A 1/10 Tzz(r) dx dy (altitude 0.6 km)
5 4.5 i-?

(2.5-5)

-4.5 5 -i

2 T 1/l0 T (r) dx dy (altitude -0.6 k)
- 5.5 -5 2-.

(2.5-6)
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! '-i5 -4.5

13 A 1/10 f Tz,(r) dx dy (altitude = 0.6 kin)
"_-- 7,- 5 -5.5

(2.5-7)

~5.5 5
14 A 1/10 dx dy (altitude 0.6 km)... 4 1/1 Tzzr)ddyt

~4.5 -5

(2.5-8)

The error covariance matrix P0 (for an initial esti-

mate 0 = 0) has been computed for the AWN gravity model using-0
the above definitions and their extensions to the other grav-

ity quantities documented in Table 2.4-1. The resulting co-

variance matrix has been provided in Ref. 1.

2.5.2 Measurement Error Covariance Matrix

Previous analyses of gravity gradiometer test data

(e.g., Refs. 4 and 5) provide the basis for the gradiometer

measurement error model used in this report. The noise-like

measurement errors are typically modeled by a zero-mean, white-

noise signal component added to a random-walk signal component

that models instrument drift. During the first stage of proc-

essing the raw gradiometer survey data, track-crossing adjust-

ments will be applied to the measured gradients to suppress

the long-wavelength errors caused by random instrument drift.

The residual errors in the adjusted data will then consist

primarily of random errors that are accurately modeled as
zero-mean white noise.

The white noise in the individual gradient measure-

ments will not be affected by the track-crossing adjustments.

Therefore, the mean-square error a2 (E2) caused by white noise
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in a single gradient measurement can be computed from the spec-

tral density S (E2 /Hz) (two-sided spectrum) of the noise and

the effective averaging time tave (sec) of the gradiometer

output filter:

= S/t (2.5-9)ave

For example, if S = 80 E2 /Hz and tae 12 sec (one meas-

urement every kilometer at a speed at 300 km/hr), then the rms

error of the individual measurements is a = 2.6 E E 0.26 mgal/km.

When these measurements are averaged using the data template,

the mean-square error a2 of the resulting mean gradient is de-m
termined by the number N of measurements in the average:

= o 2/N (2.5-10)m

In Eq. 2.5-10, the number of measurements N is determined by

the length L (km) of the averaging zone in the data template,

the speed V (km/hr) of the survey aircraft, and the time tave

(sec) between consecutive measurements:

N =L/(Vta) (2.5-11)
ave

It is recommended that the organization of the gravity-

related quantities in the truth vector x, which is defined by

the documentation matrix D, should also be used to organize

the measurement vector z1l To achieve the same organization

in both vectors, the mxn matrix H1 in Eq. 2.1-7 is defined for

the template under discussion as follows:

H1  [0mx p Imxm , p = n - m (2.5-12)

In Eq. 2.5-12, 0 rx p is the mxp zero matrix and Imxm is the mxm

identity matrix. This definition of H1 , with m = 12 and p = 2,

is appropriate for the example template defined by Table 2.4-1,

2-21
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in which the first two gravity quantities are used to character-

ize the residual gravity disturbance component which is being

estimated. The remaining m quantities listed in Table 2.4-1

and the truth vector x are the measured quantities in z1  The

order of listing these quantities is preserved because of the

mXm identity matrix in Eq. 2.5-12.

The error covariance matrix R1for the prototype tem-

plate documented in Table 2.4-1 has been computed using a

gradiometer white-noise model with two-sided spectral density

S = 80 E2/Hz, an rms error per gradient measurement of a = 0.26

mgal/km, an aircraft speed of V = 300 km/hr, and an averaging
Stime of tave = 12 seconds per measurement. The covariance

matrix is diagonal because the gradiometer measurement errors

are modeled as uncorrelated from measurement to measurement.
2-. The 12 diagonal elements of RI, expressed in (mgal/km)2 , are

listed below:

RI(Il) = 0.262 6.76 x 10

R1 (2,2) = 0.262/40 1.69 x 10 3

RI(3,3) = 0.262/80 8.45 x 10-

RI(4,4) = 0.26 /120 5.63 x

* RI(5,5) = 0.262/160 4.23 x 10-4

RI(6,6) = 0.26 /240 2.82 x 10-

Rl(7,7) = 0.262/320 2.11 x 10-

" RI(8,8) = 0.262/480 1.41 x 10-4

RI(9,9) = 0.262/640 1.06 x 10-4

R1 (10,10) = 0.262/960 7.04 x 10- 5

R1 (11,11) = 0.262/1280 5.28 x 10- 5

RI(12,12) = 0.262/2560 2.64 x 10-5
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2.6 ESTIMATION AND ERROR COVARIANCE EQUATIONS

f.i

The purpose of this section is to summarize the cal-

culation for estimating the z component of the residual dis-

turbance vector using Eqs. 2.2-1 to 2.2-7 and the data template -9
and covariances defined in Sections 2.4 and 2.5.

For an initial estimate R-0 = 0 of the truth vector,
the optimal estimate of the residual vertical disturbance d (r) -U.

(located at the point beneath the center of the data template)

is given as follows:

dz (r) = G zI  (2.6-1)

G BK I  (2.6-2)

B = [i -l 0 1x12] (2.6-3)

K1 = PoH [H1P0HI + R1 ] 1  (2.6-4)

H1  
10 12x2 112x12 (2.6-5) ,.

In Eq. 2.6-1, zI is the 12xl vector of averaged gradiometer

data, averaged using the data template documented in Table 2.4-1.

The measurement error covariance matrix R is given in Sec-

tion 2.5.2 and the initial gravity covariance matrix P0 has

been provided (Ref. 1).

The error variance of the estimate in Eq. 2.6-1 is

2 T-"
P E _(d W d (r)) I BPBT (2.6-6)
dd EI -(r z -1

P1  P0 - KIHIP 0  (2.6-7)
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For the numerical values provided, the rms error (pl/ 2 of the
dd

estimate of the residual vertical disturbance is 3.6 mgal, as
computed using Eq. 2.6-6. Other data templates are being devel-

oped at TASC to meet the accuracy requirements for processing

of the GGSS test data. These templates will be described in

future reports.

6
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3. SUMMARY AND CONCLUSIONS 1
3.1 SUMMARY

This report has presented a practical methodology for3

processing airborne gravity gradiometer data to estimate gravity J

disturbance vectors at the surface of the earth. The methodology

consists of two stages. During -he first stage, the gradiometer

measurements are averaged over subregions of the surveyed area

using data templates. The purpose of this first stage is to

reduce the dimensionality of the computations. During the

second stage, the averaged gradiometer measurements are

weighted optimally and summed to estimate the gravity disturb-

ance vector (or in the case of GGSS testing, to estimate the0

residual gravity disturbance vector). The data templates are

selected to meet specified rms accuracy requirements, while

avoiding unnecessary computations.

As an interim example of the type of data processing

and documentation that are required for handling real survey

data, a prototype data template is defined. Associated with

this template are gravity and measurement error covariance

matrices, which are needed to design optimal estimators for

this template and analyze their rms errors.

Special attention is given to the unique requirements

for testing of the GGSS. Because the limited geographic extent

of the survey area makes long-wavelength accuracy verification

imprecise, a specially defined gravity disturbance is intro-

duced, called the residual gravity disturbance vector (the0

departure of the disturbance vector from its local mean value).

3-1
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The residual gravity disturbance vector should be estimated

during testing of the GGSS, rather than the gravity disturbance

vector, because the long-wavelength content of the residual

disturbance vector can be more easily controlled.

3.2 CONCLUSIONS

Based on the results of this study, the following

principal conclusions are reached.

* A practical methodology is available for
processing airborne gradiometer data to
estimate gravity disturbance vectors (or
residual gravity disturbance vectors for
testing of the GGSS) at the surface of
the earth

" Data processing templates can be de-
signed, using error covariance analy-
ses, to reduce the dimensionality of
the data processing while satisfying
accuracy requirements

* The technical approach (minimum-variance
estimation based on averaged measure-
ments) is flexible and can handle mix-
tures of gravity quantities appropriate
to future survey needs.
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